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Abstract

Air quality evaluation in major countries around the world is mainly based on station-
ary, in situ monitors that aim to provide a representative measure of local air quality.
To comply with air quality standards, local governments may take targeted measures
to reduce pollution around the monitors. The strategic response could lead to changes
in the spatial representativeness of the monitors in the long run. Using high-resolution
satellite-based air pollution measures, I examine local governments’ strategic behav-
ior and its implications on dynamic representativeness based on the staggered roll-out
of the monitoring system in China. My analysis shows that local governments target
pollution reductions in areas closer to monitors after monitor installations, leaving pol-
lution elsewhere unchanged or even increased. I also find heterogeneities in the strategic
measures taken by local officials with different political incentives, e.g., larger strategic
reductions in cities with younger mayors. My results suggest an improved policy design
for air quality evaluations, which needs a combination of ground monitoring data and
auxiliary pollution information from remote sensing data and public supervision.
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1 Introduction

Enforcement of and compliance with regulations hinge on accurate measurements of imple-

mentation and outcomes.1 Imperfect monitoring of national regulations can lead to strategic

compliance at the local level, which will further bias measurements and cause policy fail-

ures. Implementation of national policies at local levels under fiscal and political incentives

is a principal-agent problem inherent in the delegation of authority by governments to bu-

reaucratic officials (Aghion and Tirole 1997).2 Given the ubiquitous information asymmetry

between central and local governments, local regulators are likely to implement targeted

strategies to meet national policy goals. In the field of environmental regulation, studies

have found firms and local governments responding to different regulation stringencies in

ways that result in unintended consequences such as pollution spillover (Kahn 2004; Kahn

and Mansur 2013; Kahn et al. 2015; Chen et al. 2018; Karplus et al. 2018). For example,

Auffhammer et al. (2009) find targeted regulatory efforts in response to nonattainment des-

ignations under the Clean Air Act in the U.S., and He et al. (2020) find that Chinese local

officials enforce tighter water quality regulations on polluters immediately upstream of mon-

itoring stations. Thus, an accurate measure of environmental quality that accounts for local

regulators’ strategic behavior is critical for decentralized regulation enforcement.

Air quality evaluation in major countries around the world is mainly based on stationary,

in situ monitors that aim to provide a representative measure of local air quality. China

launched a nation-wide, real-time air quality monitoring and disclosure program in 2013.

Over 1400 monitors in three staggered waves of cities were quickly built, and air quality in

China has greatly improved in the past few years. However, the monitors do not cover the

entirety of China. The central government intends to use national policy goals to achieve

better air quality but only observe the air pollution at monitored areas. Consequently,

the local regulation enforcement tends to target “monitor readings” instead of the actual

air quality. Studies find data manipulation issues in China’s air quality data before this

1For instance, crime reduction relies on correct detections of crime activities; tax reform requires precise
estimation of population income distribution; transportation and environmental regulations need accurate
monitoring of traffic and pollutants.

2There exists a rich theoretical literature outlining contracts that align the principal’s and agent’s in-
centives (Laffont and Tirole 1993; Bénabou and Tirole 2006). In the political contract between central and
local governments, the incentives include monetary incentives such as subsidies and fines, as well as political
incentives such as hierarchical assignments of duties and promotions.
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real-time monitoring was introduced, indicating the importance of “monitor readings” to

local regulators. (Andrews 2008; Chen et al. 2012; Ghanem and Zhang 2014) Although

better monitoring technologies help improve data quality significantly (Greenstone et al.

2020a), strategic responses at local levels can still exist. Previous studies by Zou (2020)

and Grainger et al. (2019) have shown firms’ and local regulators’ strategic behaviors in

responding to either the intermittent monitoring schedule or choices of new monitor sites for

the monitoring system in the U.S. However, there is a lack of empirical analysis of strategic

responses to spatial gaps in monitored areas at the local level. Moreover, previous studies

have not examined the monitors’ spatial representativeness from a dynamic perspective.

Even if the monitor siting was representative ex-ante, strategic responses could invalidate

the representativeness ex-post.

In this paper, I leverage high-resolution satellite-based air pollution measures to examine

local officials’ strategic behaviors in pollution reduction and the implications on dynamic

spatial representativeness of ground monitors in China. I use a distance-based Difference-in-

Differences analysis with treatment intensity to study the strategic behaviors. The staggered

roll-out of the new monitoring system allows cities that joined in different waves to serve as

treated and control cities for each other. I then examine the strategic pollution reductions by

defining a treatment intensity indicator. The areas near monitors are classified as “monitored”

areas, and areas far away from monitors are “unmonitored” areas. I then compare the

pollution changes before and after a monitor is opened. In order to learn if such strategic

behaviors would change regulatory effectiveness, I examine the spatial representativeness of

ground air pollution monitors by comparing population-weighted average pollution levels of

an entire city to the city’s average pollution based on monitored locations. In doing this, I

find that most of the monitors represent the city’s average air quality well at the years of

monitors roll-out. However, the spatial representativeness is changing over years, indicating

spatially differentiated pollution changes within a city.

My paper fills the spatial gaps of ground-level monitoring data by using fine-scale grids

data to study the pollution changes over space. The satellite images include annual PM2.5

(fine inhalable particles, with diameters that are generally 2.5 micrometers and smaller)

grids at the 1km by 1km resolution (over nine million grids for all of China) from 2000 to

2017.3 Using the annual level data, I avoid concerns about the missing data in most monthly
3By combining satellite-based measures of AOD with chemical-transport modeling and land character-
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and daily satellite data. Moreover, the fine-scale grids provide rich spatial variations. This

satellite-based PM2.5 data is becoming popular in economic studies because it fills the gaps

in ground monitoring networks and validates the data quality at the ground level. (Sullivan

and Krupnick 2018; Fowlie et al. 2019) To provide evidence supporting the political incentives

behind strategic pollution reductions, I collect data on city characteristics such as population,

GDP, etc., as well as information about local officials from the China Political Elite data,

which records the local officials’ career path, age, and education.

The main finding of this paper is that areas adjacent to monitors experience 6.5% lower

PM2.5 concentrations than those farther away, and the results are robust to alternative

definitions of monitored and unmonitored groups. 4 The baseline impact of monitoring

on overall air pollution is positive (pollution increases), showing that the strategic pollution

reduction may lead to pollution leakages to unmonitored areas. I use an event study analysis

to show that the parallel trends hold for pre-opening periods in general. Moreover, by

including post-opening periods, I find that the difference in pollution becomes larger as the

final assessment deadline approaches. 5 My results are robust to placebo tests of random

monitor locations and random monitor opening dates. To eliminate the concerns about

measurement errors in the satellite-derived PM2.5 data, which may correlate with ground

monitors spatially, I also run the same analysis using raw daily satellite Aerosol Optical

Depth (AOD) readings and find robust results.

One additional identification concern may arise from the fact that most monitors are

placed in urban centers with poor air quality, so the political interpretation of the results

may not be appropriate. Thus, the difference in pollution reduction patterns between the

monitored and unmonitored groups may not necessarily be caused by local regulators’ strate-

gic responses to stringent environmental targets. Instead, the results could be driven by

pollution transported from polluted areas to the cleaner area. Another possibility is that

regulators choose to prioritize more polluted areas first instead of gaming the evaluations.

I eliminate this type of concern by conducting a heterogeneity analysis in which I compare

istics, van Donkelaar et al. (2019) derive ground-level concentrations of PM2.5 at high levels of spatial
disaggregation.

4In the main finding, cells within 3km of a monitor are defied as the monitored area, and cells outside
3km are in the unmonitored group.

5According to the Air Pollution Prevention and Control Action Plan announced in 2013, the central
government conducted a final assessment of overall pollution reduction at the end of this action plan in 2017.
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the strategic pollution reductions for monitors located in dirtier areas to monitors located

in cleaner areas of a city. I find no significant impact of monitors being in a polluted area

on strategic reductions.

I have conducted heterogeneity analyses to support the political interpretation of strategic

pollution reduction. First, I find strong heterogeneity across cities according to the timing

of entering the new monitoring program. The later a city joins the monitoring program, the

larger strategic responses that are observed. Second, I have also conducted a heterogeneity

analysis by cities’ pollution compliance levels, where I find a larger strategic reduction in

cleaner cities and cities with pollution levels approaching the national standard. Third, cities

with younger mayors who have greater promotion chances have larger strategic responses.

Lastly, I find that having an economic recession in the previous year shifts local officials’

regulation focus from environmental performance to economic growth, and leads to smaller

strategic reductions. Taken together, these findings consistently confirm the existence of

local officials’ strategic pollution reduction, which arises from the misalignment between the

national policy goal and local bureaucratic incentives.

Local officials employ a few strategies to reduce pollution near monitors strategically.

The next part of the paper discusses the channels through which the spatial differences

in pollution reductions occur. The potential channels could include local measures such as

directly cleaning the air near monitors or shutting down restaurants and small workshops near

monitors, and non-local measures such as relocating polluting sources away from monitors

or implementing traffic control. Local pollution reduction measures reduce air pollution

in areas adjacent to monitors without increasing pollutions elsewhere, whereas non-local

measures will lead to pollution leakages to unmonitored areas. My results suggest that non-

local measures dominate, and pollution leaks to areas more than 60km away from monitors.

Although there is no data available to test for the mechanisms directly, the political incentives

behind the strategic behaviors are strongly supported by government reports, media news,

and multiple heterogeneity analyses.

I provide policy suggestions for a better air pollution monitoring system. My analysis of

spatial representativeness suggests that most of the monitors are good representations of a

city’s average air quality at the beginning of monitors roll-out. However, given local officials’

strategic responses and the fact that monitor locations are unlikely to change once sited, my
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simulation of future monitors’ representativeness shows that the ground monitoring system

will not be representative in the long run. Since ground monitors are costly to build, and the

observed strategic response may still exist even with new monitors, it is important for the

central government to combine ground monitor readings with external sources of pollution

measurements such as satellite, mobile monitors, and public supervision.

This paper makes the following contributions. First, my results highlight the importance

of accounting for local regulators’ strategic responses when the central government designs

national policies. By documenting the gap in pollution reductions for monitored and unmon-

itored areas, I provide evidence that policies that are ex-ante efficient will not necessarily

be efficient with the existence of strategic local responses. My paper is the first empirical

study which links the local official’s strategic behaviors with the dynamic change in monitor

representativeness and examines the underlying political incentives.

My paper adds to the growing literature on the political economy of environmental reg-

ulation by highlighting the implementation of national regulations at the local level. (Kahn

2004; Kahn et al. 2015; Jia and Nie 2017; Chen et al. 2018; He et al. 2020) A few of these

studies focus on the upstream-downstream gap in China’s water pollution regulation. A

recent study by He et al. (2020) discusses how imperfect performance monitoring of water

pollution in China can break down the central-local alignment. In my paper, I show that

the gaps in ground monitoring networks can lead to significant deviation in the local air

pollution regulations from what the central government observes.

Second, I contribute to the growing literature on the environmental monitoring regulation

and enforcement (Gray and Shimshack 2011; Duflo et al. 2013; Shimshack 2014). While ex-

isting literature mainly focuses on the air pollution monitoring system in the U.S. (Grainger

et al. 2019; Zou 2020), where they look at either the intermittent monitoring schedule or

monitor siting from a static spatial point of view. My paper adds to the limited studies

looking at the new air quality monitoring program in China and particularly examines the

dynamic changes in monitors’ spatial representativeness due to local officials’ strategic re-

sponses to gaps in monitor coverages. My paper relates closely to two of the concurrent

studies. Greenstone et al. (2020a) show the improvement of data quality with the help of

the new monitoring system, and Barwick et al. (2020) focus on the relationship between

information disclosure in the new program and people’s avoidance behaviors. My study
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complements the previous two in that I reveal the heterogeneous impact of the system on

air quality caused by local regulators’ strategic responses to gaps in monitoring coverages.

With the strategic responses, the information disclosed to the public would be inaccurate,

and people’s avoidance behavior may be biased (especially for rural households). My study

is also widely applicable to monitoring regulation in other countries in both the developed

and developing world because they either have monitoring networks that were built decades

ago or need to design a new monitoring system.

Third, this paper adds to the literature on the value of satellite data in environmental

regulations. Taking advantages of the high-resolution satellite images of air pollution, I

am able to fill the gaps in ground monitoring and examine the pollution changes across

different regions. In particular, I use satellite measures to evaluate the population-weighted

pollution levels in each city and the representativeness of the ground monitoring system.

Similar studies in the U.S. context also prove the value of satellite data and show the bias

in attainment and non-attainment designations using only ground monitor’s readings and

the resultant welfare losses (Sullivan and Krupnick 2018; Fowlie et al. 2019). In addition

to air pollution regulations, the value of satellite data in fields like climate change, wildfire

surveillance (Ruminski et al. 2007), forest land cover (Hansen et al. 2013), and biodiversity

(Turner et al. 2015) has been increasingly recognized by regulators and researchers.

Finally, I provide policy implications for an improved air pollution monitoring and en-

forcement. The central government should use auxiliary pollution information from remote-

sensing data and public supervisions, together with the ground-level monitoring data, to

evaluate pollution conditions. Although it is difficult to directly test the mechanism of

local regulators’ strategic pollution reductions due to data limitations, I provide indirect

evidence for the role of economic development pressure, local regulators’ characteristics, and

public pressure. My results support the political incentives behind local officials’ strategic

behaviors and show the importance of an incentive-compatible enforcement from the central

government.

The remainder of the paper is organized as follows. Section 2 provides a brief background

on environmental regulations and the monitoring system in China. Section 3 describes the

main data sources. Section 4 presents the main identification of local officials’ strategic

pollution reductions. Section 5 explores channels and mechanisms underlying the strategic
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behavior. Section 6 discusses policy implications for the air pollution monitoring system.

Section 7 concludes.

2 Institutional Background

The benefits of China’s unprecedented economic growth in the past decades are built upon

the huge cost of a stained environment. China’s unprecedented economic growth relies

heavily on industrialization and fossil fuels, and lax environmental regulations. Over the

last 40 years, China has experienced the fastest economic growth and became the largest

consumer of energy and coal while also having many of the most polluted cities in the

world.6 Severe air pollution (known as “smog”) in major cities attracted the attention of the

international community, putting pressure on the central government of China. In the past

decades, public awareness of air pollution rises, and more research has revealed the negative

impact of air pollution on human health, both physical and mental. The Chinese government

began to shift its policy priority from the long-lasting economic growth to environmental

concerns and introduced stringent regulations on air pollution. This section introduces the

political system and environmental regulations in China and discusses the underlying nature

of local officials’ strategic behaviors.

2.1 Political System in China

Political incentives are one of the internal mechanisms of both economic development and

environmental protection, especially in China. A salient feature in China’s political system

is that the central government sets targets and links the local officials’ promotion to their

performance in these targets. Local officials, in turn, are highly incentivized and are given

great flexibility in local regulatory plans to meet the national targets. Studies in political

economics have examined the principal-agent problem lies in China’s economic development.

The incentive-based strategic responses by local governments have led to many unintended

consequences such as inequality, collusion, corruption, and cheating, which may undermine

the policy goals. (Li and Zhou 2005; Fisman and Wang 2015; Oliva 2015; Jia and Nie 2017;

Jia 2017)

The Target Responsibility System launched in the 11th Five-Year-Plans (FYPs) in 2005

6“Helping China Fight Air Pollution”, The World Bank. https://www.worldbank.org/en/news/
feature/2018/06/11/helping-china-fight-air-pollution
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marked an important transformation in China’s national policy, where environmental tar-

gets were incorporated into the evaluation criteria of local officials.7 In this system, local

leaders who fail to attain environmental performance targets, no matter how successfully

they accomplished all other tasks, would receive an unqualified evaluation in their year-

end comprehensive assessment, and would not be eligible for any annual bonuses or career

advancement. However, such a motivation system has also motivated strategic responses.

More recent literature has placed the spotlight on the firms and local governments’ behaviors

under various water and air pollution regulations. The strategic responses to environmental

regulations have led to issues like data manipulations (Chen et al. 2012; Ghanem and Zhang

2014; Karplus et al. 2018) and pollution spillovers (Kahn 2004; Kahn et al. 2015; Chen et

al. 2018).

2.2 Environmental Regulations in China

Air pollution regulation has been a top priority of the central government of China in the

past decade. It declared “war on air pollution,” implementing a series of mitigation actions,

such as the “Air Ten” action plan that was announced in 2013, (the Air Pollution Prevention

and Control Action Plan). The action plans add detailed pollution control requirements

to the 12th FYPs in terms of targets, standards, measures, and technologies. In addition

to the plans, a raft of new environmental protection laws and guidance are enacted, which

are claimed to be the “strictest ever” environmental policies regulations to show the central

government’s determination to win this “war”.

Under the set of stringent regulations that closely correlate with local official’s own in-

centives, it is not a surprise to see that China has made significant progress in pollution

reduction and prevention over the past decade. For example, the “Air Ten” evaluates local

officials’ performance in pollution reductions on an annual basis. In addition, the central gov-

ernment conducted a final assessment of overall performances at the end of this action plan

in 2017. The promotion of local officials is not the only aspect linked with their performance

in pollution control. The government budgets and new projects related to air pollution are

linked to the local officials’ performance as well.

Stringent central regulations have helped improving air quality in China, according to the

7China’s five-year planning process defines overarching principles to guide national policy and broadly
sets forth regulatory objectives for both economic growth and environmental protection.
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ground monitor readings. For example, Greenstone et al. (2020b) estimate the air pollution

trend since 2013 (“Air Ten”) and show that all of the air pollutant concentrations dropped

sharply, except for O3, which saw a modest increase. PM2.5 levels dropped by 27.7 µg/m3,

or about 41 percent from the 2013 level. However, the sharp reduction in air pollution is

based on the ground monitor readings, which may be subject to bias due to gaps in spatial

coverages. My paper aims to dig deeper into this pollution reduction trend and study

the local governments’ strategic pollution reduction behaviors using the newly disclosed

monitoring system.

2.3 Monitoring Systems for Ambient Pollutants

Evaluating a city’s air quality and local officials’ performance is mainly based on the sta-

tionary, in situ monitors. Along with the evolution of China’s environmental regulation and

policies, the monitoring system for ambient pollutants evolves significantly. The data quality

in China has been criticized a lot, especially for air pollution data before 2013: only 74 ma-

jor cities had monitors, the data was reported by local governments as a daily air pollution

index, and not available to the public. Obviously, local governments have great power to

manipulate the reported air pollution data. As shown in Ghanem and Zhang (2014), when

the policy goal is the number of "blue sky days" in a year, that is when the air pollution

index is less than 100, the air pollution data reported by local governments is bunching at

the cut-off. 8

To win the “war against pollution” after 2013, China launched a nation-wide, real-time

air quality monitoring and disclosure program, which quickly built-out over 1400 monitors.

Several major improvements have been made in this new monitoring program. Firstly,

PM2.5 is listed as a major pollutant. Secondly, the monitored data are uploaded to the

cloud automatically, which significantly eliminates the data manipulation issue in the pre-

automation self-reported pollution data. A recent study by Greenstone et al. (2020b) shows

the improvement in data quality with the new monitoring system, and the increased public

awareness of pollution prevention.

There are three types of monitors in China: 1. Monitors controlled by the central govern-

ment; 2. Monitors controlled by local government; 3. Micro Monitors for specific polluting

8“Blue sky day” is a term introduced by the central government in 1998 when Beijing was bidding to host
the Olympics, at which the city’s Air Pollution Index is less than 100. The number of “Blue sky days” is a
critical basis to evaluate a city’s air quality condition.
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sources. The central government control monitors are the first group of monitors set up

before air pollution becomes a society-wide concern. Also, the local government has a rela-

tively low involvement in the central monitors. Most importantly, the performance of local

officials in eliminating air pollutions is based on the readings of central monitors. To help

better control for polluting sources, the local officials build many local government control

monitors, which are not included in evaluating a city’s average pollution. 9

In order to regulate the siting and operation of the monitors, the central government

issued guidelines for air quality monitoring. The guidelines include the monitors’ location

choices, monitoring techniques, management of the monitoring data, and penalties for data

manipulation and other human intervention of the monitors. The central government state

that only central monitors will be counted into the evaluation of cities’ average air quality

conditions and local official’s performance in pollution reduction. Local monitors, although

built under the same guidelines, will only be helping local officials in detecting polluting

sources and designing for local regulatory plans.

Three waves of prefectural cities entered the monitoring system successively in each year

between 2012 and 2014. Major development regions such as the Jing-Jin-Ji region, the

Yangtze River Delta region, and the Pearl River Delta region, as well as a few large cities

such as provincial capitals, are the first wave to enter the new monitoring network. In these

cities, many of the monitors were built and operated long before the new monitoring system

was introduced. Entering the program means upgrading the existing monitors to automation,

as well as adding new monitors. By the end of 2012, 496 monitors in 74 cities started to

work. The second wave and the third wave then added around 450 and 550 monitors into

the network each year. Cities in three waves vary largely in terms of their hierarchy level and

overall environmental performances. Figure 1 shows the three roll-out waves of monitors in

China. The national monitoring network with 1499 central monitors is designed to serve for

urban areas of 336 cities. The number of monitors in each city is based on the population

density and a city’s pollution level in the past three years.

Since local officials do not have much control over the location choices of central monitors,

ideally, as long as the central monitors well-represent local air quality conditions, the moni-

toring network should be efficient. Moreover, the central government encourages third party

9As of 2016, there were more than 2000 monitors in China, including both central and local monitors.
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companies to gradually take over the operation and maintenance of these monitors, which

greatly eliminates the possibility of direct data falsification, shutting down or destroying the

monitoring devices. Data accuracy has been significantly improved after the involvement of

third-party organizations (Niu et al. 2020). However, manipulations and strategic responses

by local officials never ended. Medias covered several stories of constantly watering the mon-

itored areas with fog cannon trucks, shutting down small-scale workshops, and food trucks

near monitors, which burnt coal.

There is a lack of empirical evidence for local officials’ pollution reduction strategy facing

the new monitoring system. Since the scattered monitors lead to gaps in measuring the

pollution exposure for unmonitored areas, bias may still exist due to local officials’ strate-

gic responses in having spatially differentiated pollution control measurements in monitored

areas and unmonitored areas. The issue is not unique in China. Fowlie et al. (2019) and Sul-

livan and Krupnick (2018) examine the misclassification of attainment and non-attainment

designation of counties due to the gaps in ground air pollution monitors in the U.S, and

the potential welfare loss using the satellite-based pollutant data as references. Grainger et

al. (2019) also use satellite NOx data to check the strategic siting behaviors of attainment

and non-attainment counties. They find avoidance behaviors of local officials in attainment

counties near the non-attainment threshold, where they strategically place new monitors at

a relatively clean area of the county. Inspired by these studies, I use the remote-sensing data

to fill the gaps in ground air pollution monitoring system and find evidence for local officials

spatially differentiated pollution control strategies.

3 Data

3.1 Remote Sensing Data

In order to examine the spatial difference in air pollution regulations, this paper fills the

gap in the ground monitoring system using high-resolution images of the major air pollu-

tant, PM2.5, which are derived from the original satellite measures of Aerosol Optical Depth

(AOD). The satellite AOD data comes from NASA’s Moderate Resolution Imaging Spectro-

radiometer (MODIS) algorithm. AOD measures the total vertical distribution of particles

and gases within a grid according to the light extinction coefficient. It indicates how much

direct sunlight is prevented from reaching the ground by aerosol particles and can be used
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to infer ground-level pollution, particularly for fine particles such as PM2.5 and PM10. At-

mospheric science literature has shown a strong correlation between satellite measure and

ground-level pollution data.10 Since the satellite measures are largely affected by cloud cov-

erages over an area, missing data is a big issue when using remote sensing data with fine

spatial and temporal resolutions. Studies of the remote sensing techniques find better cor-

relations between AOD and ground-level PM with coarser spatial and temporal resolutions

by month or year (Hoff and Christopher 2009).

The satellite images this paper uses include annual PM2.5 grids (1km by 1km resolution,

nine million grids for whole China) from 2000 to 2017. By combining satellite-based measures

of AOD with chemical-transport modeling and land characteristics, van Donkelaar et al.

(2019) derive ground-level concentrations of PM2.5 at high levels of spatial disaggregation.

One concern with the satellite-derived ground-level pollution measure is the measurement

errors caused by the calibration of the satellite data using ground monitoring data. Even

though that van Donkelaar et al. (2019) use geographical weighting method to give smaller

weights to cells further away from ground monitors, and larger weights to cells closed to

ground monitors, one may be worried about different measurement errors may occur at cells

with different distances to monitors. To address this concern, the authors conducted cross-

validation tests, where they remove part to all of the ground monitors from the calibration.

The derived PM2.5 data still performs well. 11

3.2 Spatial Representativeness of Ground Monitors

With the fine-scale pollution data and spatial information of the new ground monitoring

network, I examine the spatial representativeness of these monitors. First, I apply the kernel

density estimation to compare the pollution distribution of monitored cells with that of

unmonitored cells, following the methodology from Grainger et al. (2019), which define a

z-score for each grid in each city to measure the within-county variation. 12 I also compare

the spatial distributions of different types of ground monitors: central vs. local. The kernel

10Liu et al. (2007); Lee et al. (2012); Zhang and Li (2015). Previous economic research using the satellite
measure as the proxy for ground-level pollution includes Foster et al. (2009); Chen et al. (2013); Bombardini
and Li (2016); Sullivan and Krupnick (2018); Fowlie et al. (2019).

11I have also used raw daily AOD data downloaded from NASA’s MODIS system to check the robustness
of my analysis to potential measurement errors that correlate with locations of ground monitors.

12Z-score is calculated by taking the observed value in grid cell i in city c and year t, subtract the average
for that city, and scale it by the city level standard deviation.
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density estimation result in Figure 2(a) shows that monitors are mostly placed in a relatively

more polluted area in a city. This is consistent with the intuition that most monitors are

placed in urban areas to cover more population. Figure 2(b) shows that local monitors are

placed in a slightly cleaner area comparing to central monitors. This is intriguing because

one would expect the local officials to put local monitors nearer to polluting sources in order

to regulate air pollution directly.

One thing to notice is that almost all monitors are located in urban areas, and the sparse

central monitors are the only base in evaluating the air pollution condition of a city. The

gaps in the ground monitoring network might cause the regulation focus to bias toward

urban citizens. Instead, the less-monitored places, i.e., the rural areas’ pollution, will not

be considered in evaluating the local officials’ environmental performance. Contrarily, the

satellite-based measurements give a highly spatial resolved coverage of the air pollution in

the entire city area. To examine the difference between monitor-based and satellite-based

city average PM2.5, I use the 1km by 1km gridded population count from 2015 Census

to weigh each cell and calculate the weighted average PM2.5 for each city. Taking this as

the “true” city-level PM2.5, I then compare it with the monitor-based population-weighted

average PM2.5. The map in Figure 3 shows the monitors representation errors in the years

that cities joined the system. I regard the cities with errors within ±10% as having well-

representative monitors. The warm colors are cities where monitors over-represent the “true”

city-level PM2.5, and the cool colors are cities with under-representative monitors. The

representation errors exhibit large spatial variations, where two-thirds of cities have over-

representative monitors, consistent with the kernel density figures. I have also included a set

of interesting correlates in Appendix A2 and A3 to check if the leaders’ characteristics, the

GDP per capita, or industrial type matters for the “representation errors”.

The representation errors in Figure 3 are static at the moment of their openings. If the

pollution reduction patterns are even across space, then the representativeness of monitors

would not change as long as the monitors’ locations do not change. However, though monitors

are unlikely to move for a long period, local regulators’ strategic responses to the static

monitor locations would change the monitor’s spatial representativeness overtime. From the

representation error maps in each year (Appendix A1), this is indeed the case. Monitors’

spatial representativeness exhibits dynamic changes in years after cities joining the program,

which greatly motivates my study of local regulators’ strategic pollution reduction behaviors.
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3.3 Other Data and Summary Statistics

To check if other factors would affect the spatial representativeness of ground monitors

and the strategic environmental regulating behaviors, I collect data on city characteristics

such as population, GDP, etc., and weather variables, such as temperature, humidity, wind

directions, wind speed, etc. I have also collected information about local officials from the

China Political Elite data, which includes local officials’ career path, age, and education.

The summary statistics are presented in Table 1 and 2. Table 1 presents satellite PM2.5

summary statistics by calendar year. Over the period of study, the PM2.5 level increased

significantly before 2013, and then declined. After the declaration of the “war against pol-

lution”, there is an overall improvement in air quality. In Table 2 , I present a summary

statistic by different waves of cities, where I summarize the population-weighted PM2.5

density using the 2015 population in each grid cell as the weight. I also summarize the

population-weighted PM2.5 density at cells containing monitors, which are in general higher

than the city average PM2.5 in all three waves of cities. In addition to the PM2.5 densities, I

also include a summary of city characteristics such as the population and GDP by the three

waves. Comparing the three waves, I find that cities in earlier waves tend to be dirtier and

have more population. In terms of GDP, and the GDP in each industry, cities joining the

program earlier tend to be more economically developed. The difference in city character-

istics among waves may lead to different environmental strategies and regulation outcomes.

Because cities in earlier waves are high in the hierarchy rank, city officials’ characteristics

could be different. From the summary statistics of city mayors’ age and education, I find

that wave one cities have slightly older mayors and more mayors with PhD degrees. Most

mayors in wave two cities own master’s degrees, and most city mayors in wave three have

bachelor’s degrees.

4 Strategic Pollution Reduction After Monitoring

4.1 Empirical Framework

I examine the strategic pollution reductions in monitored areas after monitoring using a

Difference in Differences method with a staggered roll-out schedule. Joining the new mon-

itoring program by either having new monitors or automation of existing monitoring data

could change local officials’ incentives and strategies to meet environmental targets. Thus,
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once a city joins the program, it will be considered as in the treated group. Within each

treated city, there will be different treatment effects by distances away from monitors. I use

the following empirical framework to examine the impact of monitoring on overall air quality

and the heterogeneous treatment effects by treatment intensity:

ln(PM2.5iwt) = αOpenwt + βNeari ×Openwt + Celli + Y eart + Trendwt + εit (1)

The outcome variable, ln(PM2.5iwt), is the logarithm of annual PM2.5 concentration at

the 1km×1km grid cell. i is the index for grid cells within cities opened in wave w at year

t. In my study, there are over nine million cells’ annual PM2.5 from 2000 to 2017 in the

raw data. Openwt is the treatment indicator that takes the value of 1 if cell i is in a wave w

city after joining the new monitoring program. The treatment intensity is defined by Neari,

which equals 1 if the grid cell i is in an area adjacent to a ground monitor (monitored area),

and 0 if the cell i is in areas far away from monitors (unmonitored area). In most cases,

I am less interested in the causal effect of the monitoring program per se (α), but rather

more in the difference in the causal effect in monitored vs. unmonitored areas (β) after

monitoring. Due to the large spatial and temporal variations in air pollution, there may be

confounders that would bias β from identifying the difference in pollution reductions across

space. Especially, cells in monitored and unmonitored areas could have different location

attributes that affect air quality. To address these concerns, I report results of estimations

with a rich array of controls, including cell fixed effect and year fixed effect. I also include a

wave-specific time trend to allow the unobserved time trend in pollution to vary across waves.

The identification variation is then from comparing cells in monitored vs. unmonitored areas

before vs. after new waves of monitor roll-out. Since pollution observed at a cell is likely

driven by emissions elsewhere that also affect nearby cells, I cluster standard errors at the

city level.

Cities selected into the program in different waves may be due to wave-specific unob-

servables that are time-variant. Cities in earlier waves tend to be larger cities with more

population, higher GDP per capita, higher levels of air pollution and industrial emissions,

etc. I include wave by year fixed effects in Equation (2). Although the fixed effects absorb

the baseline impact of monitoring on overall pollution (α from Equation (1)), Equation (2)

provides a clearer identification of changes in treatment effect by treatment intensity (β). It

also has more flexible controls than the wave-specific time trend. The identification variation
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now is from comparing monitored vs. unmonitored cells in the same wave cities, before and

after monitoring. The key explanatory variable is Nearit which is an interaction of Neari
and Openwt.

ln(PM2.5it) =βNearit + Celli +Wavew × Y eart + εit (2)

4.2 Baseline Results

In the baseline results, I estimate equation (1) and (2) using my preferred sample from 2007

to 2017, which includes five years prior to monitoring and all post monitoring years to have

a relatively balanced panel. 13 The monitored area is defined as grid cells within 3km of a

monitor. The results are robust to alternative definitions of monitored areas such as 2km,

5km, and 10km, and unmonitored areas such as outside 3km, 30km, and 50km where I

drop the cells in between to address the concern of misclassifying monitoring status. The

DID with treatment intensity provides estimates of local effects within the choice of the

treatment intensity groups, where results using different monitored areas could represent

different pollution control strategies that local officials adopt. I will discuss more in the next

section.

Table 3 presents the baseline DID result by estimating Equation (1) and adding controls

sequentially. In the first four columns, Open captures the baseline impact of joining the

monitoring program on air pollution, comparing to control cities. The baseline DID estimates

of the causal impact of monitoring on air pollution are positive (pollution increases) and

significant across the controls. In Figure 4, I conduct an event study for the causal impact of

monitoring, where I replace the treatment indicator Openwt with opening dummies for each

year pre and post monitoring. The event study figure shows no pretrend, and significant

increases in pollution after cities joined the program. 14

13For cities in the first wave, the sample period is [2007, 2017] with five years pre and post monitoring;
for cities in the second wave, the sample period is [2008, 2017] with five years pre and four years post
monitoring; for cities in the third wave, the sample period is [2009, 2017] with five years pre and three years
post monitoring.

14Goodman-Bacon (2018) points out the concern of DID with heterogeneity in treatment timing, which
could be a valid concern for my baseline DID estimation of the causal effect of monitoring (α). Thus, an
event study is preferred than an average treatment effect. In my paper, the three waves of cities entered
the program consecutively within three years. The potential impact of wave-specific factors affecting the
pollution in different years has been controlled by the Wave by Year FE. The estimated key parameter of
interest (β) is the different pollution changes among treatment intensity groups within a wave of cities after
monitoring.
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I then include the treatment intensity indicator 1(0-3km) in column (5) & (6) to capture

the heterogeneous treatment effects of the monitoring program on pollution in monitored

(cells within 3km) vs. unmonitored (cells outside 3km) areas.15 The results from column (6)

show that pollution in monitored areas is decreased after monitoring by 2%. Unmonitored

areas exhibit 4% higher pollution after a city joins the program, indicating the potential

pollution leakages.

In Table 4, I show the baseline DID results are robust to alternative definitions of treat-

ment intensity groups. The first three columns present results for monitored areas defined

as cells within 3km of monitors, and compare to different unmonitored areas such as cells

outside 30km and 50km of monitors. The areas in between are dropped to have a clearer

defination of treatment intensity groups. Column (4)-(6) expand the monitored areas to

five distance bins to show how the treatment effect varies over space. Consistent with in-

tuition, the difference in pollution changes between monitored and unmonitored groups are

larger when two groups are more apart from each other, and the differences are smaller when

monitored areas are further from monitors.

In Table 5, I use wave specific year fixed effects to absorb the baseline causal effect of

monitoring and show the relative changes between treatment intensity groups (Equation (2)).

Column (1) presents the main finding of my paper. Pollution in monitored areas is 6.5% less

than that in unmonitored areas after monitors roll-out. Similar to Table 4, the results are

robust to alternative treatment intensity groups. The first three columns present results for

monitored areas as cells within 3km to monitors, and compare to different unmonitored areas

such as outside 30km and 50km of monitors. The areas in between are dropped to have a

clearer definition of treatment intensity groups. Column (4)-(6) expand the monitored areas

to five distance bins to show how the treatment effect varies over space. Consistent with

intuition, the difference in pollution changes between monitored and unmonitored groups is

larger when two groups are more apart from each other, and the differences are smaller when

monitored areas are further from monitors.
15Without controlling for cell fixed effect, the raw difference between two treatment intensity groups is

positive. This result is likely driven by the fact that the urban centers, where most monitors are placed,
tend to have higher pollution levels than other areas of a city. Once cell fixed effect is included, the results
show that areas near monitors experiences larger pollution reductions after monitors opened.
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4.3 Identification

The key assumption is that in the absence of a monitor opening or switching to automation,

air quality in the monitored and unmonitored areas follow parallel trends. In other words,

I assume that the only reason that ambient air quality might show a significant difference

between areas nearby monitors and areas far away from monitors is because that local officials

strategically put more efforts into reducing “local” air pollution. As directed by the central

government, most monitoring stations are placed in urban centers to cover populated areas.

One may be concerned that cells in the unmonitored areas are too far away from the city

center and thus would have different pollution trends from those in the monitored areas.

While the parallel trend assumption is not directly testable, I conduct a “placebo” test and

an event study analysis to support the assumption. To address the identification concern

of endogenous monitor locations, I conduct another “placebo” test with random monitor

placements.

4.3.1 Placebo Tests

First, I conducted a “placebo” test using only pre-program periods and randomly assign

opening years for all monitors at the same locations. The rationale behind the placebo test

is that cells in “monitored” and “unmonitored” areas should not be significantly different over

a false-opening year in the absence of the monitoring program. For each monitor, I randomly

assign an opening year between 2007 to 2011 for 500 times. I then conduct 500 estimations

of equation (2) and plot the distribution of the coefficients in Figure 5. Comparing with the

observed coefficient, I find that the observed coefficient lies outside of the 99% confidence

interval of the coefficients from 500 placebo tests, which center around 0.016. This result

shows that before the monitoring program, a false opening would not lead to larger pollution

reductions in monitored areas than unmonitored areas.

Second, in order to show that my findings indeed a result of local pollution reductions

in monitored areas, I conduct a placebo test with random monitor locations. Keeping the

number of monitors and the year of joining the program unchanged, I randomly relocate all

the monitors within each city 500 times. The underlying idea is that if local officials only

conduct strategic reductions in areas very closed to monitors, then no significantly different

pollution reduction should be observed in areas with a false monitor opening compare to

other areas in the city. After matching the 500 groups of placebo monitors with the satellite
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grid cells, I estimate equation (2) and plot the distribution of the coefficients in Figure 6.

The observed coefficient lies outside of the 99% confidence interval, suggesting that local

pollution reductions happened only at the observed monitored areas.

4.3.2 Event Study

I use event study analysis to show the parallel trends between monitored and unmonitored

groups hold for pre-opening periods in general. I divide the years around opening dates into

five pre-opening periods n = −5,−4, ...,−1, and six post-opening periods n = 0, 1, ..., 5 and

run the following regression:

ln(PM2.5it) =
5∑

n=−5

βnφ(n)×Nearit + Celli +Wavew × Y eart + εit (3)

where φ(n) = 1 [n ≤ t ≤ n+ 1], indicating interval n. The base interval is the year before

the opening year (i.e., n = −1). I expand the dataset used in main DID analysis (PM2.5 in

2009-2017) to year of 2007 which allows wave 1 and wave 2 cities to have the same number of

five pre-opening periods. However, the number of post-opening periods for cities in different

waves would not be the same due to data availability.

Figure 7 (and Column 1 in Table 6) presents the coefficient estimates of φ(n). The

results support the parallel trends assumption in general: compared with the base interval

(1-year before opening years), the subsequent changes in air pollution between the monitored

and unmonitored areas are not significantly different for the four pre-opening intervals in

the specification. In contrast, I find statistically significant different air pollution reduction

between the monitored and unmonitored groups in the post-opening intervals for the same

specification. The fifth year prior to monitoring exhibits a significant difference, which could

be due to more unobserved policy changes in years further before monitoring. Column (2)-

(5) in Table 6 show the event study estimation results are robust to alternative definitions

of Nearit.

4.3.3 Eliminate Alternative Explanations

In this subsection, I discuss a few alternative explanations which may generate similar pat-

terns, including monitored area’s attributes, and the measurement error in the satellite-

derived pollution measures. First, an identification concern may arise from the fact that

monitors are in urban centers, which happen to be more polluted area. The difference in

pollution reduction patterns between the monitored and unmonitored areas exists due to the
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nature of pollution transporting from dirty areas to clean areas. If this is the case, then one

should expect to see larger differences in pollution changes after monitoring for monitored

cells located at dirtier areas than monitored cells located in cleaner areas of a city.

A similar concern lies in the political interpretation of local officials’ strategic behaviors.

One may argue that local officials choosing to reduce more pollution in monitored areas is

not a strategy that they play to gaming the performance evaluation. Instead, they choose a

more cost-effective way to reduce pollution in a relatively more polluted area, which happens

to be the area adjacent to a monitor. To address this type of concerns of monitored areas

being coincident with polluted areas, I examine the heterogeneity of treatment effects where

I allow the impact to differ based on the relative pollution levels of cells within the vicinity

of monitors as in Equation (4),

ln(PM2.5it) =βNearit + ηNearit ×Dirtyit + Celli +Wavew × Y eart + εit (4)

where Dirtyi is a dummy variable which equals 1 if the PM2.5 of a cell i is higher than

the city average PM2.5 level in year t. This specification examines the potential concern

of monitors locating in the dirty area of a city. The coefficient η will show the different

pollution gaps between monitors in a dirty area and clean area. The results are reported

in Table 7, where I include alternative definitions of monitored and unmonitored areas to

show robust results. Cells within 3 km of a monitor are the monitored cells in the first

three columns, and I then expand the monitored areas to include more distance bins. From

columns (1) to (6), I show that no matter which monitored groups, being in the dirtier area

of a city does not lead to large pollution reductions as concerned. In fact, the magnitude

of the interaction terms with Dirtier is almost zero comparing to the strategic pollution

reductions in monitored areas.

Another possibility that may generate similar results is the measurement errors from

satellite-derived pollution measures. The PM2.5 data I use is derived from the raw satellite

images, which require information from monitor-based sources. The Geographical Weighted

Regression method used when deriving PM2.5 from satellite images assigns larger weights to

areas closer to ground monitors, and smaller weights to farther areas. One may be concerned

that the resulted measurement errors from the data generating process will be correlated with

the distances to monitors and also varied over time when more ground monitors are opened.

If this is the case, then the spatially different pollution patterns could simply because of
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the spatially differentiated measurement errors. Although van Donkelaar et al. (2016) have

conducted several out-of-sample cross-validation tests to justify their satellite-derived PM2.5

data, I conduct a robustness check using the raw satellite images to further eliminate this

possible explanation. Using the raw AOD data from the NASA MODIS product, I manually

aggregate the daily AOD images at 3km by 3km resolution into annual AOD, and match with

the ground monitors. The grid cells containing monitors are monitored cell, and those do not

contain any monitors are unmonitored cells. Estimating Equation (2) using the AOD data

shows a similar result. After monitoring, pollution in monitored cells decreases comparing

to unmonitored cells. (Table 8)

After eliminating alternative explanations, the empirical results shown in this section

suggest that after monitoring, the area adjacent to monitors experience larger pollution

reductions relative to areas farther away. So far, I have not claimed that the spatial gaps

in pollution changes are due to local officials’ strategic responses to central environmental

regulations.

5 Heterogeneous Effects and Potential Mechanisms

In this section, I conduct multiple heterogeneity analyses to support the political interpreta-

tion of the results. I discuss the potential channels through which the heterogeneous effect

by treatment intensity may occur and show how the effect size varies in various circum-

stances, including a cities compliance level, economic development, leader characteristics,

and information transparency.

5.1 Channels for Strategic Reduction

I present the spatial distribution of the impact of monitoring and discuss abundant qual-

itative evidence of the local officials’ pollution control strategies to support the political

interpretation of my findings. By replacing the binary indicator of one monitored group

and one unmonitored group used in Eq (1) with fifteen treatment intensity groups, I show

the spatial distribution of the treatment effect by distances from monitors in Table 11.

The changes in the impact of monitoring over space also indicate the potential channels of

strategic pollution reductions. The coefficient estimates of Open represents the impact of

monitoring on air pollution in the base group, which includes cells more than 300km away

from the closest monitors. Combining with the interaction terms, the strategic pollution re-
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ductions exist within 70km ranges of monitors and are robust in magnitudes. Beyond 70km,

the overall impact of monitoring turns positive and continues to increase for cells further

away. With more distance bins in the unmonitored groups, Table 11 represents the potential

pollution migration patterns across space after monitoring. Note that most of these central

monitors are placed in population-dense (urban) areas. Column (2) in Table 11 summarizes

the population in each distance bin. Although the monitoring enforcement seems to divert

air pollution away from areas near monitors, this does not necessarily lead to policy failure

when considering the population exposed to air pollution. However, this could exacerbate

inequality issues if pollutions are leaking to rural areas. I provide more discussion in Section

6 on the dynamic changes of monitors’ representativeness in population-weighted pollution

exposure.

I reviewed numerous policy documents from both the central and local governments in

China, collecting reports by national inspections teams, and media newsletters. They show

that local governments have strong political incentives in improving air quality readings to

meet the centrally designated air quality targets. As I introduced in Section 2, the most

direct ways to falsify monitor readings from the devices are difficult to implement with the

new monitoring system. Such direct manipulation methods include shutting down monitors

during polluted days, blocking up the sensors inside monitoring devices, and deliberately

damaging monitors. With the real-time data collecting monitoring system, any of these data

manipulations would result in abnormal data patterns and trigger alarms. However, the

advanced new system cannot eliminate all possible channels of “manipulating” the monitor

readings. As the famous saying in China points out, “when the central government has a

policy, the local governments have countermeasures”. There are several major strategies that

local regulators commonly adopt to “manipulate” the monitor readings.

The first type of strategy directly cleans up the air near ground monitors. Since the

monitor locations are known to local regulators, many of them choose to clean up the adjacent

areas by spraying water or using fog canon towards either monitors (higher risk of being

caught, most effective), or towards trees near monitors (lower risk, less effective). A recent

scandal was exposed by the media that in Jan 2018, the building of the Environmental

Protection Agency in Shizhuishan, Ningxia Province, where a central monitor is located,

was turned into an ice sculpture when the staff tried to reduce monitor readings with fog

cannons.

22



The next set of strategies is the ones causing the largest pollution leakages into unmon-

itored areas. Short term strategies may include traffic controls in monitored areas, divert

food trucks and other mobile polluting sources away from monitors, or restrict operation

durations for certain polluters. An inspection report of Tianjin’s environmental regulation

states that the inspection team found strategic pollution reduction behaviors such as traffic

controls and increased water spraying frequency in the monitored areas. Media also revealed

temporarily shutting down of gas stations near monitors in Pingdingshan, China. 16

A more effective strategy in the longer term would be relocating polluting sources from

small-scale workshops, restaurants to large industrial plants to suburban or rural areas that

are commonly unmonitored. This type of strategy would be preferred considering either eco-

nomic development or environmental performance (improving monitor readings). However,

it would impose the largest environmental damages and bias of central regulations. Based

on the baseline DID results in Table 3, relocation of polluting sources seems to be the most

common strategy given that unmonitored areas become more polluted after monitoring.

The strategies that local officials use to achieve better monitor readings are hard to test

empirically due to data limitations. For example, traffic controls and water spraying in

monitored areas are short-term actions which may only be caught by constantly observing

the abnormal phenomenon near monitors. Instead, I use several heterogeneity analyses to

indirectly support the findings of local regulators’ strategic responses.

5.2 Heterogeneity in Strategic Pollution Reductions

I present evidence from heterogeneous analysis to show that the political incentives of local

politicians are indeed the driving forces behind my main findings.

a) Roll-out Waves of Entering the Program

In addition to the annual assessment, the local officials face a final assessment of air pollution

reductions at the end of 2017. They may use more aggressive strategies to reduce monitor

readings when the final assessment approaches. On the contrary, major cities in earlier waves,

especially those in the key development regions, face more stringent PM2.5 reduction goals. It

is unclear which incentivizes local officials more in taking more aggressive strategic responses,

the stringent target or the approaching deadline. In Figure 8, I investigate heterogeneity

16Example of news and media coverages of the existing manipulation strategies: Yuqing, People.cn;
Bloomberg Law; Guancha; People.cn
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in the impact of treatment intensity on pollution reductions by roll-out waves. I find the

cities in later waves show larger strategic pollution reductions in monitored areas, indicating

more aggressive strategies as the deadline approaches. Another possible explanation is that

cities in wave one and two cities are those with monitor readings upgraded from manual to

automation in the new system, rather than having new monitors opened. Thus, the strategic

pollution reduction might exist before the cities join the new monitoring system.

b) Compliance Levels

Local official’s pollution control strategy could be varying with the existing pollution condi-

tions. In Table 9 and Figure 9, I explore the heterogeneity by cities’ average pollution levels,

using the national annual PM2.5 standard 35 ug/m3 as a reference. I use the population-

weighted city average pollution at the monitored cells at the years of monitors roll-out.

Cities with average pollution levels below the annual standard are defined as clean cities. I

find that clean cities tend to have larger strategic pollution reductions in monitored areas

after monitoring. Restricting the sample to cities with average PM2.5 from 30-40 ug/m3

shows similar results. In order to see if the heterogeneity by compliance level varies with

roll-out waves, I include additional analysis using subsamples in each wave. Clean cities

in wave one tend to have more aggressive strategies. This could be due to the fact that

wave one cities are in general dirtier than other cities. Thus, dirtier cities in wave one are

the most polluted cities in China and under strict supervision by the central government.

To see how strategic response varies by the closeness to the national standard, I include

another layer of interaction, Compliance, which is the difference between city PM2.5 and 35

ug/m3. For a clean city, when its pollution level approaches the national standard, I find

larger strategic pollution reductions. The heterogeneous effect by cities’ compliance levels

indicates that local officials facing different compliance status choose different strategies to

meet the environmental targets.

c) Leader Characteristics

City mayors play an essential role in policy regulation and implementations. I investigate

whether a city mayor’s characteristics have an impact on the strategic pollution reductions

after monitoring. Figure 11 shows the heterogeneity analysis by city mayor’s age, where I

separate the sample into two subsamples by city mayors’ age. A mayor has better chances

to be promoted to a higher position at an age younger than 57. Thus, a younger mayor
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may have larger incentives to perform well in the environmental evaluation and adopt more

strategic pollution reduction methods in monitored areas. For mayors older than 57, which

means they have little to no promotion opportunities, they would be less incentivized to

achieve policy targets. Figure 11 shows such results that cities with mayors younger than

57 tend to have larger strategic reductions in monitored areas. On the other hand, I do not

find any significant impact of a mayor’s educational background on their strategic behaviors.

This may suggest the strategic reduction methods are common knowledge for leaders across

education levels and do not require elite training.

d) Economic Growth

In general, there are tradeoffs between economic development and pollution abatement for

local regulators. Prioritizing environmental regulations may hurt the local GDP growth

and local officials may have different strategic behaviors in pollution control when facing

different economic conditions. To examine the role of economic growth pressure, I generate

a dummy variable indicating the growth or recession of a city’s GDP in the previous year

and interact with the DID treatment intensity term. Table 10 shows the results for all cities,

and for each wave of cities. I find that no matter in which roll-out wave, when a local official

faces downward pressure on economic growth, they tend to reduce strategic measures that

improve monitor readings. This set of heterogeneity results suggest that local regulators

are balancing both their efforts and performance in economic growth and pollution control.

The gap in pollution changes between monitored and unmonitored areas is indeed a result

of local regulators’ strategic pollution reductions.

e) Information Transparency (Public Pressure)

Local official’s strategic behaviors can potentially be captured by residents if they have full

information about air pollution monitors, such as locations and readings. With the new

monitoring system, information about the central monitors are publicly available through

multiple sources, including the MEP’s website and third-party online platforms. In addition,

a few provinces have launched their own online air pollution disclosure platform. They

provide detailed information about the monitor locations, including both central and local

monitors. In China, eleven provinces have an online platform, which shows their effort

in improving information transparency. Moreover, local residents can perform additional

supervision on air pollution monitors and check consistency with online information. In
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Figure 12, I investigate such heterogeneity and find that provinces with online pollution

disclosure do not show significant strategic pollution reductions in monitored areas after

monitoring, which suggests the importance of information transparency and public pressure

could potentially reduce local official’s strategic behaviors.

6 Policy Implications and Suggestions

6.1 A Well-representative Monitoring System

One would expect to see local regulators to have very different strategic behaviors facing

the new monitoring system, because monitors’ siting could over-represent, well-represent,

or under-represent the average city pollution levels. Even though the central government

intended to place the monitors in populated areas to improve the representativeness, the

over-representing monitors (monitor-based pollution larger than city average pollution) could

exacerbate local government’s strategic pollution reductions. I conduct a heterogeneity anal-

ysis to show that it is necessary to build a monitoring system that well-represents the average

city pollution level. I split the sample into three groups: “over-represent” cities with repre-

sentation errors greater than 10%, “well-represent” cities with errors between -10% to 10%,

and “under-represent” cities with smaller than -10% errors.

Figure 13 shows the event study on three subsamples. I find that cities with over-

representing monitors tend to have more aggressive strategic reductions after monitoring,

comparing to well-representing cities. It is hard to find a clear trend for cities with under-

represented monitored pollution due to the few numbers of “under-represent” cities. The

heterogeneous results are intuitive because if the central government places monitors in the

dirtiest area of a city, local officials will be more incentivized to reduce the pollution only

in the monitored area. However, unmonitored areas could still have more pollution than

the national standard due to pollution leakages. Thus, it would be necessary for the central

government to evaluate the cities’ average pollution thoroughly and use the population-

weighted average pollution as references for monitoring sites. The well-represent cities still

have a slightly downward trend after monitoring. This indicates that a well-representative

monitoring system could, to some extent, reduce the strategic responses at the local level

but would not prevent the behaviors from happening. In fact, the strategic responses may

change the spatial representativeness in the long run.
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6.2 Dynamic Monitors Representativeness

From the representation error map in Figure 3, the current monitoring system in most cities

shows good representativeness when the cities first joined the program. However, similar

to the monitoring systems in developed countries, monitor locations are unlikely to change

once the monitors were placed. For example, the current air quality monitors in the U.S.

were built two decades ago, and covered populated areas following federal guidelines. Other

than adding new monitors to nonattainment counties, the existing monitor locations have

not changed ever since. Thus, even though monitors were sited to be well-representing

counties’ overall air quality in the 90s, the representativeness can be dynamic due to human

interventions in monitored areas. Using my estimates for the relative pollution reductions

in monitored areas (cells within 3km have 6.5% more pollution reductions), and the last

observed year of pollution in my data in 2017, I calculate the projected pollution levels for

five years from 2018 to 2022. I do not conduct simulations for a longer period into the future

because there could be large uncertainty and new regulations. I find that in the near future,

the over-representative monitors seem to become more representative of a city’s overall air

quality. However, there are also more cities exhibiting negative representation errors, 42

cities at years of monitoring vs. 52 cities in 2022. Even though the monitoring system works

fine in my projected years, it is possible that with the strategic responses, monitors would

become less representative in the long term. Moreover, the pollution leakages to unmonitored

areas, mostly rural regions, could cause large health impacts and biased evaluation of policy

goals.

6.3 The Remote Sensing Data and Other Pollution Information

The key to eliminating or preventing local official’s strategic responses to the ground moni-

toring system is to add referencing data sources into the evaluation. In an ideal world with

ground monitors everywhere, local officials are impossible to predict which sets of monitors

would be used to evaluate their environmental performance. Thus, the only strategy left is

to improve air quality city-wide. This seems unrealistic because ground monitors are large

in size and costly to build and maintain. The satellite-based pollution measures can be a

good source to fill the gap in ground monitor coverages. As shown in (Sullivan and Krupnick

2018) and Fowlie et al. (2019), remote-sensing data has helped the authors to assess the ex-

tent to which the existing U.S. ground monitor-based measurements over- or under-estimate
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true exposure to PM2.5 pollution. In my context, I have used the satellite-based data to

re-evaluate the policy goals set by the “Air Ten” action plan for the end of 2017. Unlike the

monitor-based pollution patterns estimated in Greenstone et al. (2020a), PM2.5 decreases by

40% from 2013 to 2018, my estimates find an overall increase in the city-wide pollution level.

This suggests that monitor-based evaluation would overstate the environmental performance

and distort future policy design.

However, it is important to recognize the limitations of completely relying on satellite

images. Satellite-based data is not direct measures of ground pollution levels and is subject

to missing data issues that are strongly correlated with cloud coverages. Ground monitors,

on the other hand can provide more detailed hourly observations and better accommodate

various weather conditions. Additionally, advanced monitoring technologies have provided

broader coverages with mobile monitors and micro-monitors that local regulators have less

control. Hence, the central government should use this information as supplementary evi-

dence for city-wide pollution evaluation. This is true for any country relying on stationary,

in situ monitors in environmental regulations. Overall, a better policy design of monitoring

regulation and enforcement would need a mixed contribution from the ground monitoring

system, remote-sensing technologies, mobile monitors, as well as public awareness, and third-

party auditors.

7 Conclusion

Environmental regulations are often associated with strategic responses, and effective reg-

ulation relies on accurate monitoring and measurements. In major countries around the

world, local governments face stringent pollution abatement targets, which often link local

governments’ federal funding or regulators’ promotions with their success in achieving these

targets. A growing literature has highlighted the unintended consequences of these policies,

such as pollution spillover in China’s water quality regulation, which undermines policy goals

and bias evaluations. This paper adds to these studies by demonstrating strategic responses

to central regulations at local levels and extending the literature to air pollution monitoring

regulations. Using high-resolution satellite measures of pollution, I have shown that local

officials have incentives to improve monitor readings by strategically reducing pollution in

monitored areas. Such strategic behaviors will change the spatial representativeness of the

current monitoring system and lead to biased policy evaluations.
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I find that there exists a significant difference between pollution changes in areas adja-

cent to monitors and areas far away from monitors after monitoring. This result is robust to

different definitions of monitored and unmonitored areas. Although the new ground moni-

toring network has improved data quality significantly, the gaps in monitor coverages lead

to pollution leakages from monitored areas to unmonitored areas. The baseline DID result

shows that pollution in unmonitored areas increases after monitors roll-out, which indicates

that the underlying mechanism of such strategic reduction is non-local, relocating polluting

sources away from monitors. By studying the heterogeneous impact of cities’ pollution lev-

els, the characteristics of local leaders, the role of public pressure, and the role of economic

growth, I provide evidence supporting the political interpretation of the strategic pollution

reductions. Overall, my results are consistent with the expectation that strategic pollution

reductions are more likely to arise with larger incentives to improve monitor readings, such

as in cities with younger mayors and cities with approaching assessment deadlines.

My results emphasize the importance of accurate and representative measurements in reg-

ulations and are widely applicable to any regulations with in situ monitoring systems globally.

My paper contributes to the growing literature on environmental monitoring regulation and

enforcement by expanding the study to China’s air quality monitoring system. I highlight

the importance of a monitoring regulation that accounts for local regulators’ strategic re-

sponses and considers the monitoring network from a dynamic point of view. The results are

also widely applicable for building or improving monitoring systems in other countries, both

in the developed and developing world. I provide policy suggestions for efficient regulations

that require a mixed source of pollution information from ground-level monitors, advanced

monitoring techniques, and the public to accurately evaluate local officials’ environmental

performance and improve air quality city-wide.
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Figure 1: Roll-out of Monitoring Stations in China

Note: This figure shows the roll-out of air pollution monitoring stations in China by three waves from 2012
to 2014. All monitors on the map are central government-controlled monitors.
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Figure 2: Kernel Densities for PM2.5 Z-Scores

(a) Kernel Densities for PM2.5 Z-Scores: Central monitors vs. No monitor

(b) Kernel Densities for PM2.5 Z-Scores: Central monitors vs. Local monitors

Note: Each figure shows the kernel density estimate for the distribution of city-level z-scores. Z-score is
calculated by taking the observed value in grid cell i in city c and year t, subtract the average for that city,
and scale it by the city level standard deviation. Figure (a) compares the distribution of city-level z-scores
at cells containing central monitors to cells without monitors using data from 2009 to 2017. Figure (b)
compares the distribution of city-level z-scores at cells containing central monitors to cells containing local
monitors in 2016.
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Figure 3: Monitor Representation Errors at Opening Years: All Cells vs. Monitored Cells

Note: This figure shows the monitors representation errors in the years of joining the new monitoring
program. The representation error is defined as the percentage difference between city average pollution
level calculated based on only monitored cells and city average pollution based on all cells. All the pollution
levels are weighted by the 2015 grid-level population count. Cities in green means the monitors well-represent
city average PM2.5, with representation errors in [−10%, 10%]. Cities in warm colors (error > 10%) have
monitors over-representing the city average pollution, and those in cool colors (error < −10%) meansthat
the monitors under-present city average pollution level. The map is based on raw data and presented at the
city level. Representation error maps for each year from 2012 to 2017 are in Appendix A1.
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Figure 4: Event Study of Monitor Opening on Air Pollution

Note: This figure shows the event study results of monitor opening on air pollution controlling for cell fixed
effects, year fixed effects, and wave-specific time trend. I regress the PM2.5 on four pre-opening indicators
and four post-opening indicators. The year before monitoring is the base interval. Standard errors are
clustered at city level.
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Figure 5: Placebo Test with Random Opening Years in Pre-Monitoring Periods

Note: This figure shows the results of a “placebo” test using only pre-program periods and randomly assign
each monitor an opening year. I conduct 500 estimations of the treatment intensity analysis and plot the
distribution of the 500 placebo coefficients and compare them with the observed effect size using the real
sample (red line).
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Figure 6: Placebo Test with Random Monitor Locations

Note: This figure shows the results of a “placebo” test that conducts 500 randomly relocations of all monitors
within a city and keep the opening year unchanged. I conduct 500 estimations of equation (2) and plot the
distribution of the 500 placebo coefficients, and compare them with the observed effect size using the real
sample (red line).
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Figure 7: Event study: Change in Impact of Monitoring on Air Pollution in Monitored vs.
Unmonitored Areas

Note: This figure shows the event study results of monitor opening with treatment intensity on air pollution.
(Column 1 from Table 4), where I regress the PM2.5 on interactions of treatment intensity indicator Near,
and five pre-opening indicators and six post-opening indicators, controlling for cell fixed effects, and wave by
year fixed effects. The year before monitoring is the base interval. Each estimate represents the difference in
PM2.5 between monitored areas (cells within 3km of monitors) and unmonitored areas (cells outside 3km)
at a given period. Standard errors are clustered at city level.
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Figure 8: Heterogeneity Analysis by Waves: Change in Impact of Monitoring on Air pollution
in Monitored vs. Unmonitored Areas

Note: This figure shows the event study results of monitor opening with treatment intensity on air pollution
for three subsamples divided by roll-out waves. Using each city group, I regress the PM2.5 on interactions
of treatment intensity indicator Near, and pre-opening and post-opening indicators, controlling for cell and
year fixed effects. The year before monitoring is the base interval. Each estimate represents the difference in
PM2.5 between monitored areas (cells within 3km of monitors) and unmonitored areas (cells outside 3km)
at a given period. Standard errors are clustered at city level.
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Figure 9: Heterogeneity Analysis by City Average Pollution Level: Change in Impact of
Monitoring on Air Pollution in Monitored vs. Unmonitored Areas

Note: This figure shows the event study results of monitor opening with treatment intensity on air pollution,
for two subsamples of cities classified by comparing the cities’ average PM2.5 level with national annual
standard, 35 µg/m3. Using each city group, I regress the PM2.5 on interactions of treatment intensity
indicator Near, and five pre-opening indicators and six post-opening indicators, controlling for cell fixed
effects, and wave by year fixed effects. The year before monitoring is the base interval. Each estimate
represents the difference in PM2.5 between monitored areas (cells within 3km of monitors) and unmonitored
areas (cells outside 3km) at a given period. Standard errors are clustered at city level.
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Figure 10: Heterogeneity Analysis by City Mayors’ Age: Change in Impact of Monitoring
on Air Pollution in Monitored vs. Unmonitored Areas

Note: This figure shows the event study results of monitor opening with treatment intensity on air pollution,
for two subsamples of cities classified by city mayors’ age. The cutoff point for mayor’s age is 57 because
this is the ceiling threshold for a mayor to get promoted. Using each city group, I regress the PM2.5
on interactions of treatment intensity indicator Near, and five pre-opening indicators and six post-opening
indicators, controlling for cell fixed effects, and wave by year fixed effects. The year before monitoring is the
base interval. Each estimate represents the difference in PM2.5 between monitored areas (cells within 3km
of monitors) and unmonitored areas (cells outside 3km) at a given period. Standard errors are clustered at
city level.
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Figure 11: Heterogeneity Analysis by Province Online Disclosure: Change in Impact of
Monitoring on Air Pollution in Monitored vs. Unmonitored Areas

Note: This figure shows the event study results of monitor opening with treatment intensity on air pollution,
for two subsamples divided by whether a province has its own online pollution disclosure platform or not.
Using each city group, I regress the PM2.5 on interactions of treatment intensity indicator Near, and five
pre-opening indicators and six post-opening indicators, controlling for cell fixed effects, and wave by year
fixed effects. The year before monitoring is the base interval. Each estimate represents the difference in
PM2.5 between monitored areas (cells within 3km of monitors) and unmonitored areas (cells outside 3km)
at a given period. Standard errors are clustered at city level.
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Figure 12: Heterogeneity Analysis by Province Online Disclosure: Change in Impact of
Monitoring on Air Pollution in Monitored vs. Unmonitored Areas

Note: This figure shows the event study results of monitor opening with treatment intensity on air pollution,
for two subsamples divided by whether a province has its own online pollution disclosure platform or not.
Using each city group, I regress the PM2.5 on interactions of treatment intensity indicator Near, and five
pre-opening indicators and six post-opening indicators, controlling for cell fixed effects, and wave by year
fixed effects. The year before monitoring is the base interval. Each estimate represents the difference in
PM2.5 between monitored areas (cells within 3km of monitors) and unmonitored areas (cells outside 3km)
at a given period. Standard errors are clustered at city level.
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Figure 13: Heterogeneity Analysis by Monitor Representativeness: the change in impact of
monitoring on air pollution in monitored vs. unmonitored areas

Note: This figure shows the event study results of monitor opening with treatment intensity on air pollution,
for three subsamples divided by monitors spatial representativeness at the years of opening. Representation
errors are defined as the difference between population-weighted city average PM at monitored cells and
at all cells. Over-represent cities have representation errors greater than 10%. Well-represent cities have
error between -10% to 10%. Under-represent cities are with errors less than -10%. Using each city group, I
regress the PM2.5 on interactions of treatment intensity indicator Near, and five pre-opening indicators and
six post-opening indicators, controlling for cell fixed effects, and wave by year fixed effects. The year before
monitoring is the base interval. Each estimate represents the difference in PM2.5 between monitored areas
(cells within 3km of monitors) and unmonitored areas (cells outside 3km) at a given period. Standard errors
are clustered at city level.
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Table 1: Summar Statistics: Satellite-based Air Pollution (PM2.5, µg/m3)

Wave 1 Wave 2 Wave 3
(1) (2) (3) (4) (5) (6)

city_avg city_monavg city_avg city_monavg city_avg city_monavg
2009 54.25 59.26 49.23 56.48 40.02 48.10

(17.24) (18.35) (17.23) (17.21) (19.98) (21.31)
2010 53.10 57.98 50.23 57.65 41.34 49.22

(17.44) (18.46) (19.93) (19.88) (22.90) (23.84)
2011 50.51 55.35 47.15 54.34 38.15 45.99

(17.54) (18.66) (18.26) (18.57) (20.40) (21.47)
2012 46.91 51.45 44.97 52.08 36.40 44.13

(16.20) (17.56) (18.35) (18.73) (19.51) (20.78)
2013 54.66 59.73 51.55 58.92 41.30 49.34

(20.81) (22.16) (21.38) (21.57) (22.56) (23.74)
2014 55.31 60.29 50.58 57.97 41.83 50.48

(18.73) (19.81) (19.14) (18.89) (22.85) (24.03)
2015 51.67 56.54 47.92 54.45 37.85 44.87

(18.51) (19.68) (18.25) (18.37) (19.63) (20.25)
2016 46.48 51.33 43.37 51.23 34.32 42.41

(17.71) (18.59) (17.33) (17.83) (18.65) (20.53)
2017 52.48 56.34 47.98 54.73 40.57 47.45

(15.51) (15.81) (15.77) (15.84) (19.01) (20.14)

Notes: The underlying observations are at the city level. Standard deviations are in parenthe-
ses. Column (1), (3), (5) show population-weighted PM2.5, column (2), (4), (6) show population-
weighted PM2.5 level at monitored cells are average of post-monitoring period. Population data is
in 2015.
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Table 2: Summar Statistics: Other Variables

(1) (2) (3)

Variable Wave1 Wave2 Wave3

City Pollution, GDP, Population
Population Weighted PM2.5 51.71 48.11 39.09

(17.95) (18.55) (20.76)
Population Weighted PM2.5 at Monitored Cells 55.87 55.48 46.55

(19.27) (18.67) (21.60)
GDP Per Capita 63944 48187 30641

(30064) (31222) (16396)
GDP in 3rd Industry 236.72 67.06 31.62

(300.22) (76.67) (21.17)
GDP in 2nd Industry 204.54 94.08 44.45

(173.30) (89.73) (30.89)
GDP in 1st Industry 20.52 16.20 14.79

(15.71) (10.53) (9.88)
Population in 2015 4857550 2716721 1940899

(3499542) (1531311) (1341832)

Leader’s Characteristics
Age 51.88 50.09 50.00

(4.66) (3.65) (3.57)
Young (Age<57) .930 .995 .984

(.256) (.070) (.127)
Master .497 .572 .540

(.501) (.495) (.499)
PhD .269 .218 .158

(.444) (.414) (.364)
Bachelor .2104121 .193 .261

(.408) (.395) (.440)
Number of Cities 74 98 176

Notes: The underlying observations are at the city level. Standard deviations are in parenthe-
ses. Population-weighted PM2.5 are measured by 2009-2017 average, PM2.5 level at monitored
cells are average of post-monitoring period. GDP data is from 2001-2017 for 281 cities. Leader’s
characteristics data ranges from 2009-2015.
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Table 3: Baseline Difference in Differences Estimation Results

Dependent variable: ln(PM2.5it)

(1) (2) (3) (4) (5) (6)

Open 0.188*** 0.106*** 0.048** 0.040** 0.049** 0.041**
(0.038) (0.026) (0.022) (0.020) (0.022) (0.020)

(0-3km)*Open -0.100*** -0.062***
(0.024) (0.014)

Controls No Cell FE Cell FE Cell FE Cell FE Cell FE
Year FE Year FE Year FE Year FE

Wave×T Wave×T

Observations 84,349,384 84,349,384 84,349,384 84,349,384 83,293,774 83,293,774
R2 0.009 0.958 0.965 0.966 0.965 0.966

Note: Column (1)-(6) show DID estimation results with different fixed effects. The first three
columns represent baseline DID results, where Open is the treatment indicator that equals one if a
cell is in a city that has joined the new monitoring program. Column (4)-(6) show DID estimation
results with treatment intensity defined by distances to monitors. Cells within 3km to the monitor
are in the monitored group and cells outside 3km are unmonitored cells. Standard errors are
clustered at city level. Significance: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 4: Baseline DID Estimation Results, Alternative Unmonitored Areas

Dependent variable: ln(PM2.5it)

Unmonitored Area: >3km >30km >50km >15km >30km >50km

(1) (2) (3) (4) (5) (6)

Open 0.041** 0.043* 0.043* 0.044** 0.046** 0.049**
(0.020) (0.022) (0.025) (0.021) (0.022) (0.024)

(0-3km)*Open -0.062*** -0.068*** -0.076*** -0.066*** -0.070*** -0.079***
(0.014) (0.016) (0.017) (0.015) (0.016) (0.018)

(3-6km)*Open -0.065*** -0.069*** -0.078***
(0.014) (0.015) (0.017)

(6-9km)*Open -0.066*** -0.071*** -0.079***
(0.014) (0.015) (0.017)

(9-12km)*Open -0.066*** -0.071*** -0.080***
(0.014) (0.015) (0.017)

(12-15km)*Open -0.067*** -0.072*** -0.081***
(0.014) (0.015) (0.017)

Observations 83,293,774 74,496,330 65,280,883 83,293,774 77,485,464 68,270,017
R2 0.966 0.966 0.966 0.966 0.966 0.966

Note: Column (1)-(6) show DID estimation results. Open is the treatment indicator that equals
one if a cell is in a city that has joined the new monitoring program. The first three columns use
cells within 3km to the monitor as the monitored group and compare different unmonitored groups:
cells outside 3km, 30km or 50km of the monitors. Column (4)-(6) add four more distance bins to
the monitored group. All columns include cell fixed effects, year fixed effects and a wave specific
time trend. Standard errors are clustered at city level. Significance: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 5: Difference in Differences with Alternative Treatment Intensity Bins Estimation
Results

Dependent variable: ln(PM2.5it)
Unmonitored Area: >3km >30km >50km >15km >30km >50km

(1) (2) (3) (4) (5) (6)

(0-3km)*Open -0.065*** -0.072*** -0.079*** -0.069*** -0.074*** -0.083***
(0.013) (0.015) (0.016) (0.014) (0.015) (0.017)

(3-6km)*Open -0.068*** -0.073*** -0.082***
(0.014) (0.015) (0.016)

(6-9km)*Open -0.069*** -0.074*** -0.083***
(0.014) (0.014) (0.016)

(9-12km)*Open -0.069*** -0.074*** -0.084***
(0.014) (0.015) (0.016)

(12-15km)*Open -0.070*** -0.075*** -0.084***
(0.014) (0.015) (0.016)

Observations 83,293,774 74,496,330 65,280,883 83,293,774 77,485,464 68,270,017
R2 0.967 0.966 0.966 0.967 0.967 0.967

Note: Column (1)-(6) show DID estimation results with treatment intensity defined by distances
to monitors. Open is the treatment indicator that equals one if a cell is in a city that has joined
the new monitoring program. The first three columns use cells within 3km to the monitor as the
monitored group and compare different unmonitored groups: cells outside 3km, 30km or 50km of the
monitors. Column (4)-(6) add four more distance bins to the monitored group. All columns include
both the cell FE and Wave×Year FE. Standard errors are clustered at city level. Significance:
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 6: Event Study with Alternative Treatment Intensity Groups Estimation Results

Dependent variable: ln(PM2.5it)

Monitored Area: ≤3km ≤10km
Unmonitored Area: >3km >30km >50km >10km >30km >50km

(1) (2) (3) (4) (5) (6)

Near*(y-5) 0.018** 0.021** 0.025** 0.022** 0.024** 0.028***
(0.009) (0.009) (0.010) (0.009) (0.009) (0.010)

Near*(y-4) 0.012 0.013 0.016 0.014 0.015 0.017
(0.009) (0.010) (0.011) (0.009) (0.010) (0.011)

Near*(y-3) -0.002 -0.003 -0.007 -0.001 -0.003 -0.006
(0.009) (0.010) (0.012) (0.009) (0.010) (0.011)

Near*(y-2) -0.006 -0.005 -0.008 -0.010 -0.008 -0.012
(0.012) (0.013) (0.015) (0.012) (0.013) (0.015)

Near*(y0) -0.030** -0.030** -0.033* -0.033** -0.033** -0.037**
(0.014) (0.015) (0.017) (0.014) (0.015) (0.017)

Near*(y+1) -0.050*** -0.054*** -0.061*** -0.049*** -0.052*** -0.059***
(0.016) (0.017) (0.019) (0.016) (0.017) (0.019)

Near*(y+2) -0.044** -0.044* -0.051* -0.049** -0.049** -0.056**
(0.021) (0.024) (0.028) (0.021) (0.023) (0.027)

Near*(y+3) -0.101*** -0.108*** -0.121*** -0.105*** -0.111*** -0.126***
(0.022) (0.025) (0.029) (0.022) (0.025) (0.028)

Near*(y+4) -0.068*** -0.080*** -0.095*** -0.074*** -0.084*** -0.100***
(0.018) (0.022) (0.026) (0.017) (0.020) (0.024)

Near*(y+5) -0.080*** -0.098*** -0.118** -0.080*** -0.095*** -0.116***
(0.026) (0.034) (0.046) (0.026) (0.033) (0.045)

Observations 87,843,991 77,211,912 67,374,686 87,843,991 78,853,329 69,016,103
R2 0.966 0.966 0.967 0.966 0.967 0.967

Note: Column (1)-(6) show event study results with different treatment intensity groups. Near
is the monitored area indicator which equals one for cells within 3km from monitors in column
(1)-(3), and 10km from monitors in column (4)-(6). y-5, y-4,...,y+5 represent each year within
the 5-year time window around monitor openings. For each monitored group, the three columns
compare different unmonitored groups: cells outside 3km (10km), 30km or 50km of the monitors.
All columns include both the cell FE and Wave×Year FE. Standard errors are clustered at city
level. Significance: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 7: Heterogeneity Analysis: Difference in Differences with Treatment Intensity Estima-
tion Results

Dependent variable: ln(PM2.5it)

Unmonitored Area: >3km >30km >50km >15km >30km >50km

(1) (2) (3) (4) (5) (6)

(0-3km)*Open -0.073*** -0.079*** -0.087*** -0.077*** -0.082*** -0.091***
(0.015) (0.017) (0.019) (0.016) (0.017) (0.019)

(3-6km)*Open -0.071*** -0.076*** -0.085***
(0.015) (0.016) (0.017)

(6-9km)*Open -0.069*** -0.074*** -0.083***
(0.014) (0.014) (0.016)

(9-12km)*Open -0.070*** -0.075*** -0.085***
(0.013) (0.014) (0.016)

(12-15km)*Open -0.072*** -0.077*** -0.086***
(0.013) (0.014) (0.016)

(0-3km)*Open*Dirtier 0.010 0.010 0.010 0.010 0.010 0.010
(0.010) (0.010) (0.010) (0.010) (0.010) (0.010)

(3-6km)*Open*Dirtier 0.004 0.005 0.005
(0.010) (0.010) (0.010)

(6-9km)*Open*Dirtier 0.0001 0.0002 0.0003
(0.012) (0.012) (0.012)

(9-12km)*Open*Dirtier 0.002 0.002 0.002
(0.012) (0.012) (0.012)

(12-15km)*Open*Dirtier 0.004 0.004 0.004
(0.012) (0.012) (0.012)

Observations 83,293,774 74,496,330 65,280,883 83,293,774 77,485,464 68,270,017
R2 0.967 0.966 0.966 0.967 0.967 0.967

Note: Column (1)-(6) show DID estimation results with treatment intensity defined by distances
to monitors. Open is the treatment indicator that equals one if a cell is in a city that has joined
the new monitoring program. Dirtier is a dummy variable indicating if the pollution in a cell is
above the average city PM2.5. The first three columns use cells within 3km to the monitor as the
monitored group and compare different unmonitored groups: cells outside 3km, 30km or 50km of the
monitors. Column (4)-(6) add four more distance bins to the monitored group. All columns include
both the cell FE and Wave×Year FE. Standard errors are clustered at city level. Significance:
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 8: Robustness Check Using Raw AOD Data

Dependent variable: AOD

Unmonitored Areas: >3km >12km >50km >50km

(1) (2) (3) (4)

(0-3km)*Open -0.021*** -0.022*** -0.033*** -0.034***
(0.005) (0.005) (0.006) (0.006)

(3-6km)*Open -0.025*** -0.037***
(0.005) (0.006)

(6-9km)*Open -0.030*** -0.042***
(0.005) (0.006)

(9-12km)*Open -0.034*** -0.046***
(0.005) (0.006)

Observations 10,136,285 10,136,285 6,992,163 7,330,347
R2 0.876 0.876 0.849 0.859

Note: Column (1)-(4) show DID estimation results with treatment intensity defined by distances
to monitors. Open is the treatment indicator that equals one if a cell is in a city that has joined
the new monitoring program. The dependent variable is the annual AOD at 3km by 3km grid cells.
Column (1) & (3) use cells within 3km to the monitor as the monitored group and compare different
unmonitored groups: cells outside 3km, or 50km of the monitors. Column (2) & (4) add three
distance bins to the monitored group and compare two unmonitored groups. All columns include
both the cell FE and Wave×Year FE. Standard errors are clustered at city level. Significance:
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 9: Hereogeneous Analysis: Clean vs. Dirty Cities by Roll-out Waves

Dependent variable: ln(PM2.5it)

All Wave1 Wave2 Wave3

(1) (2) (3) (4)

(0-3km)*Open -0.062*** -0.015 -0.052*** -0.133***
(0.013) (0.015) (0.018) (0.035)

(0-3km)*Open*1(Clean City) -0.030 -0.085*** 0.003 -0.031
(0.025) (0.024) (0.056) (0.034)

(0-3km)*Open*1(Clean City)*Compliance -0.004** -0.008** -0.009 -0.006***
(0.002) (0.003) (0.012) (0.002)

Observations 86,844,613 9,856,110 16,784,304 60,204,199
R2 0.967 0.954 0.954 0.963

Note: Column (1)-(4) show DID estimation results with heterogeneity in treatment effect, separated
by roll-out waves. Open is the treatment indicator that equals one if a cell is in a city that has joined
the new monitoring program. 1(CleanCity) is a dummy variable indicating cells inside a city with
average pollution level (based on monitored cells at the opening years) below the national standard,
35 µ/g3. Compliance represents the closeness to the national standard. All columns use cells within
3km to the monitor as the monitored group and cells outside 3km as unmonitored groups. Column
(2)-(4) show the estimation using subsamples of cities in three waves. All columns include both the
cell FE and year FE (Wave×Year FE for column (1)). Standard errors are clustered at city level.
Significance: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 10: Hereogeneous Analysis: GDP Growth Pressure by Roll-out Waves

Dependent variable: ln(PM2.5it)

All Wave1 Wave2 Wave3

(1) (2) (3) (4)

(0-3km)*Open -0.064** -0.017 -0.045** -0.139*
(0.025) (0.013) (0.022) (0.072)

(0-3km)*Open*1(Economic Decline) 0.079*** 0.031 0.092*** 0.116***
(0.021) (0.047) (0.027) (0.029)

Observations 41,532,584 7,983,534 10,647,527 22,901,523
R2 0.945 0.956 0.933 0.940

Note: Column (1)-(4) show DID estimation results with heterogeneity in treatment effect, separated
by roll-out waves. Open is the treatment indicator that equals one if a cell is in a city that has
joined the new monitoring program. 1(EconomicDecline) is a dummy variable indicating cells
inside a city that experienced an economic recession in the previous year (decreased GDP). All
columns use cells within 3km to the monitor as the monitored group and cells outside 3km as
unmonitored groups. Column (2)-(4) show the estimation using subsamples of cities in three waves.
All columns include both the cell FE and Wave×Year FE. Standard errors are clustered at city
level. Significance: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 11: Impact of Monitoring on Air Pollution with respect to Distances from Monitors

Dependent variable: ln(PM2.5)

(1) Population (Million) (2)

Open 0.151*** Outside 300km 1.914
(0.048)

(0-10km)*Open -0.172*** 0-10km 261.386
(0.041)

(10-20km)*Open -0.172*** 10-20km 108.383
(0.042)

(20-30km)*Open -0.173*** 20-30km 97.286
(0.042)

(30-40km)*Open -0.170*** 30-40km 88.179
(0.043)

(40-50km)*Open -0.165*** 40-50km 80.283
(0.043)

(50-60km)*Open -0.160*** 50-60km 70.712
(0.044)

(60-70km)*Open -0.153*** 60-70km 55.526
(0.045)

(70-80km)*Open -0.145*** 70-80km 43.907
(0.046)

(80-90km)*Open -0.135*** 80-90km 32.314
(0.047)

(90-100km)*Open -0.126*** 90-100km 24.369
(0.048)

(100-150km)*Open -0.092* 100-150km 51.003
(0.053)

(150-200km)*Open -0.052 150-200km 11.966
(0.058)

(200-300km)*Open -0.051 200-300km 8.113
(0.050)

Observations 83,293,774
R2 0.967

Note: This table shows DID estimation results with treatment intensity bins. Open is the treatment
indicator that equals one if a cell is in a city that has joined the new monitoring program. The
coefficient estimates of Open represents the impact of monitoring on air pollution in the base
group, which includes cells outside of 300km of monitors. The interactions represent the effect in
each treatment intensity group. Column (2) shows the total population in each distance bin using
2015 population data. Controls include both the cell FE and Wave×Year FE. Standard errors are
clustered at city level. Significance: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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A Appendix
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Figure A1: Monitor Representation Errors by Year: all cells vs. monitored cells
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Note: The figures show the monitors representation errors from 2012 to 2017. The representation error is
defined as the percentage difference between city average pollution level calculated based on only monitored
cells and city average pollution based on all cells. All the pollution levels are weighted by the grid level
population in 2015. Cities in green means the monitors well-represent city average PM2.5, with representation
errors in [-10% , 10%]. Cities in warm colors (error > 10%) means the monitors over-represent city average
pollution, and those in cool colors (error < -10%) means the monitors under-present city average pollution
level. The map is based on raw data and presented at city level.
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Figure A2: Correlates of Monitor Representation Errors

Notes: This graph reports coefficient estimates with 95% Confidence intervals from a single panel regression
of measurement errors on city characteristics. Year and Province Fixed Effects are included.
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